utils ¶
ClientTabPFNClassifier ¶
Bases: TabPFNClassifier
predict ¶
Predict class labels for samples in X.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
The input samples. |
required |
Returns:
Type | Description |
---|---|
The predicted class labels. |
predict_proba ¶
Predict class probabilities for X.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
The input samples. |
required |
Returns:
Type | Description |
---|---|
The class probabilities of the input samples. |
ClientTabPFNRegressor ¶
Bases: TabPFNRegressor
predict ¶
Predict target values for X.
Parameters¶
X : array-like of shape (n_samples, n_features) The input samples.
str, default=None
Type of output to return. Options are: - None: Default prediction (mean) - "full": Return distribution dictionary with criterion object - Other values are passed to the parent predict
**kwargs : Additional keyword arguments Passed to the parent predict method.
Returns:¶
y : array-like of shape (n_samples,) or dict The predicted values or the full distribution output dictionary.
get_device ¶
Determine the appropriate device for computation.
This function implements automatic device selection, defaulting to CUDA if available, otherwise falling back to CPU.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device |
str | None
|
Device specification, options are: - "auto": Automatically use CUDA if available, otherwise CPU - "cpu": Force CPU usage - "cuda": Force CUDA usage (raises error if not available) - None: Same as "auto" |
'auto'
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
The resolved device string ("cpu" or "cuda") |
Raises:
Type | Description |
---|---|
RuntimeError
|
If "cuda" is explicitly requested but not available |
get_tabpfn_models ¶
Get TabPFN models with fallback between different versions.
Attempts to import TabPFN models in the following order: 1. Standard TabPFN package (if USE_TABPFN_LOCAL is True) 2. TabPFN client
Returns:
Type | Description |
---|---|
tuple[type, type]
|
tuple[type, type]: A tuple containing (TabPFNClassifier, TabPFNRegressor) classes |
Raises:
Type | Description |
---|---|
ImportError
|
If none of the TabPFN implementations could be imported |
infer_categorical_features ¶
infer_categorical_features(
X: ndarray,
categorical_features: list[int] | None = None,
) -> list[int]
Infer the categorical features from the input data.
Features are identified as categorical if any of these conditions are met: 1. The feature index is in the provided categorical_features list AND has few unique values 2. The feature has few unique values compared to the dataset size 3. The feature has string/object/category data type (pandas DataFrame) 4. The feature contains string values (numpy array)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray or DataFrame
|
The input data. |
required |
categorical_features |
list[int]
|
Initial list of categorical feature indices. If None, will start with an empty list. |
None
|
Returns:
Type | Description |
---|---|
list[int]
|
list[int]: The indices of the categorical features. |
product_dict ¶
Cartesian product of a dictionary of lists.
This function takes a dictionary where each value is a list, and returns an iterator over dictionaries where each key is mapped to one element from the corresponding list.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d |
dict[str, list[T]]
|
A dictionary mapping keys to lists of values. |
required |
Returns:
Type | Description |
---|---|
dict[str, T]
|
An iterator over dictionaries, each being one element of the cartesian |
dict[str, T]
|
product of the input dictionary. |
Example
list(product_dict({'a': [1, 2], 'b': ['x', 'y']})) [{'a': 1, 'b': 'x'}, {'a': 1, 'b': 'y'}, {'a': 2, 'b': 'x'}, {'a': 2, 'b': 'y'}]
softmax ¶
Apply softmax function to convert logits to probabilities.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
logits |
NDArray
|
Input logits array of shape (n_samples, n_classes) or (n_classes,) |
required |
Returns:
Type | Description |
---|---|
NDArray
|
Probabilities where values sum to 1 across the last dimension |