shapiq ¶
get_tabpfn_explainer ¶
get_tabpfn_explainer(
model: Union[TabPFNRegressor, TabPFNClassifier],
data: Union[DataFrame, ndarray],
labels: Union[DataFrame, ndarray],
index: str = "k-SII",
max_order: int = 2,
class_index: Optional[int] = None,
**kwargs
)
Get a TabPFNExplainer from shapiq.
This function returns the TabPFN explainer from the shapiq[1]_ library. The explainer uses
a remove-and-recontextualize paradigm of model explanation[2][3] to explain the predictions
of a TabPFN model. See shapiq.TabPFNExplainer
documentation for more information regarding
the explainer object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
TabPFNRegressor or TabPFNClassifier
|
The TabPFN model to explain. |
required |
data |
DataFrame or ndarray
|
The background data to use for the explainer. |
required |
labels |
DataFrame or ndarray
|
The labels for the background data. |
required |
index |
str
|
The index to use for the explanation. See shapiq documentation for more information
and an up-to-date list of available indices. Defaults to "k-SII" and "SV" (Shapley
Values like SHAP) with |
'k-SII'
|
max_order |
int
|
The maximum order of interactions to consider. Defaults to 2. |
2
|
class_index |
int
|
The class index of the model to explain. If not provided, the class index will be set to 1 per default for classification models. This argument is ignored for regression models. Defaults to None. |
None
|
**kwargs |
Additional keyword arguments to pass to the explainer. |
{}
|
Returns:
Type | Description |
---|---|
shapiq.TabPFNExplainer: The TabPFN explainer. |
References
.. [1] shapiq repository: https://github.com/mmschlk/shapiq .. [2] Muschalik, M., Baniecki, H., Fumagalli, F., Kolpaczki, P., Hammer, B., Hüllermeier, E. (2024). shapiq: Shapley Interactions for Machine Learning. In: The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track. url: https://openreview.net/forum?id=knxGmi6SJi .. [3] Rundel, D., Kobialka, J., von Crailsheim, C., Feurer, M., Nagler, T., Rügamer, D. (2024). Interpretable Machine Learning for TabPFN. In: Longo, L., Lapuschkin, S., Seifert, C. (eds) Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, vol 2154. Springer, Cham. https://doi.org/10.1007/978-3-031-63797-1_23
get_tabpfn_imputation_explainer ¶
get_tabpfn_imputation_explainer(
model: Union[TabPFNRegressor, TabPFNClassifier],
data: Union[DataFrame, ndarray],
index: str = "k-SII",
max_order: int = 2,
imputer: str = "marginal",
class_index: Optional[int] = None,
**kwargs
)
Gets a TabularExplainer from shapiq with using imputation.
This function returns the TabularExplainer from the shapiq[1][2] library. The explainer uses an
imputation-based paradigm of feature removal for the explanations similar to SHAP[3]_. See
shapiq.TabularExplainer
documentation for more information regarding the explainer object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
TabPFNRegressor or TabPFNClassifier
|
The TabPFN model to explain. |
required |
data |
DataFrame or ndarray
|
The background data to use for the explainer. |
required |
index |
str
|
The index to use for the explanation. See shapiq documentation for more information
and an up-to-date list of available indices. Defaults to "k-SII" and "SV" (Shapley
Values like SHAP) with |
'k-SII'
|
max_order |
int
|
The maximum order of interactions to consider. Defaults to 2. |
2
|
imputer |
str
|
The imputation method to use. See |
'marginal'
|
class_index |
int
|
The class index of the model to explain. If not provided, the class index will be set to 1 per default for classification models. This argument is ignored for regression models. Defaults to None. |
None
|
**kwargs |
Additional keyword arguments to pass to the explainer. |
{}
|
Returns:
Type | Description |
---|---|
shapiq.TabularExplainer: The TabularExplainer. |
References
.. [1] shapiq repository: https://github.com/mmschlk/shapiq .. [2] Muschalik, M., Baniecki, H., Fumagalli, F., Kolpaczki, P., Hammer, B., Hüllermeier, E. (2024). shapiq: Shapley Interactions for Machine Learning. In: The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track. url: https://openreview.net/forum?id=knxGmi6SJi .. [3] Lundberg, S. M., & Lee, S. I. (2017). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems 30 (pp. 4765--4774).