classifier_as_regressor ¶
ClassifierAsRegressor ¶
Bases: RegressorMixin
Wrapper class to use a classifier as a regressor.
This class takes a classifier estimator and converts it into a regressor by encoding the target labels and treating the regression problem as a classification task.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
estimator |
object Classifier estimator to be used as a regressor. |
required |
Attributes:
Name | Type | Description |
---|---|---|
label_encoder_ |
LabelEncoder Label encoder used to transform target regression labels to classes. |
|
y_train_ |
array-like of shape (n_samples,) Transformed target labels used for training. |
|
categorical_features |
list List of categorical feature indices. |
>>> from sklearn.datasets import load_diabetes
>>> from sklearn.model_selection import train_test_split
>>> from tabpfn_extensions import ManyClassClassifier, TabPFNClassifier, ClassifierAsRegressor
>>> x, y = load_diabetes(return_X_y=True)
>>> x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=42)
>>> clf = TabPFNClassifier()
>>> clf = ManyClassClassifier(clf, n_estimators=10, alphabet_size=clf.max_num_classes_)
>>> reg = ClassifierAsRegressor(clf)
>>> reg.fit(x_train, y_train)
>>> y_pred = reg.predict(x_test)
fit ¶
Fit the classifier as a regressor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
array-like of shape (n_samples, n_features) Training data. |
required | |
y |
array-like of shape (n_samples,) Target labels. |
required |
Returns:
Name | Type | Description |
---|---|---|
self |
object Fitted estimator. |
get_optimization_mode ¶
Get the optimization mode for the regressor.
Returns:
Type | Description |
---|---|
str Optimization mode ("mean"). |
predict ¶
Predict the target values for the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
array-like of shape (n_samples, n_features) Input data. |
required |
Returns:
Name | Type | Description |
---|---|---|
y_pred |
array-like of shape (n_samples,) Predicted target values. |
predict_full ¶
Predict the full set of output values for the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
array-like of shape (n_samples, n_features) Input data. |
required |
Returns:
Type | Description |
---|---|
dict Dictionary containing the predicted output values, including: - "mean": Predicted mean values. - "median": Predicted median values. - "mode": Predicted mode values. - "logits": Predicted logits. - "buckets": Predicted bucket probabilities. - "quantile_{q:.2f}": Predicted quantile values for each quantile q. |
probabilities_to_logits_multiclass
staticmethod
¶
Convert probabilities to logits for a multi-class problem.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
probabilities |
array-like of shape (n_samples, n_classes) Input probabilities for each class. |
required | |
eps |
float, default=1e-6 Small value to avoid division by zero or taking logarithm of zero. |
1e-06
|
Returns:
Name | Type | Description |
---|---|---|
logits |
array-like of shape (n_samples, n_classes) Output logits for each class. |
set_categorical_features ¶
Set the categorical feature indices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
categorical_features |
list List of categorical feature indices. |
required |