Skip to content

classifier_as_regressor

ClassifierAsRegressor

Bases: RegressorMixin

Wrapper class to use a classifier as a regressor.

This class takes a classifier estimator and converts it into a regressor by encoding the target labels and treating the regression problem as a classification task.

Parameters:

Name Type Description Default
estimator

object Classifier estimator to be used as a regressor.

required

Attributes:

Name Type Description
label_encoder_

LabelEncoder Label encoder used to transform target regression labels to classes.

y_train_

array-like of shape (n_samples,) Transformed target labels used for training.

categorical_features

list List of categorical feature indices.

Example
>>> from sklearn.datasets import load_diabetes
>>> from sklearn.model_selection import train_test_split
>>> from tabpfn_extensions import ManyClassClassifier, TabPFNClassifier, ClassifierAsRegressor
>>> x, y = load_diabetes(return_X_y=True)
>>> x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=42)
>>> clf = TabPFNClassifier()
>>> clf = ManyClassClassifier(clf, n_estimators=10, alphabet_size=clf.max_num_classes_)
>>> reg = ClassifierAsRegressor(clf)
>>> reg.fit(x_train, y_train)
>>> y_pred = reg.predict(x_test)

fit

fit(X, y)

Fit the classifier as a regressor.

Parameters:

Name Type Description Default
X

array-like of shape (n_samples, n_features) Training data.

required
y

array-like of shape (n_samples,) Target labels.

required

Returns:

Name Type Description
self

object Fitted estimator.

get_optimization_mode

get_optimization_mode()

Get the optimization mode for the regressor.

Returns:

Type Description

str Optimization mode ("mean").

predict

predict(X)

Predict the target values for the input data.

Parameters:

Name Type Description Default
X

array-like of shape (n_samples, n_features) Input data.

required

Returns:

Name Type Description
y_pred

array-like of shape (n_samples,) Predicted target values.

predict_full

predict_full(X)

Predict the full set of output values for the input data.

Parameters:

Name Type Description Default
X

array-like of shape (n_samples, n_features) Input data.

required

Returns:

Type Description

dict Dictionary containing the predicted output values, including: - "mean": Predicted mean values. - "median": Predicted median values. - "mode": Predicted mode values. - "logits": Predicted logits. - "buckets": Predicted bucket probabilities. - "quantile_{q:.2f}": Predicted quantile values for each quantile q.

probabilities_to_logits_multiclass staticmethod

probabilities_to_logits_multiclass(
    probabilities, eps=1e-06
)

Convert probabilities to logits for a multi-class problem.

Parameters:

Name Type Description Default
probabilities

array-like of shape (n_samples, n_classes) Input probabilities for each class.

required
eps

float, default=1e-6 Small value to avoid division by zero or taking logarithm of zero.

1e-06

Returns:

Name Type Description
logits

array-like of shape (n_samples, n_classes) Output logits for each class.

set_categorical_features

set_categorical_features(categorical_features)

Set the categorical feature indices.

Parameters:

Name Type Description Default
categorical_features

list List of categorical feature indices.

required