estimator ¶
TabPFNClassifier ¶
Bases: BaseEstimator
, ClassifierMixin
, TabPFNModelSelection
predict ¶
Predict class labels for samples in X.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
The input samples. |
required |
Returns:
Type | Description |
---|---|
The predicted class labels. |
predict_proba ¶
Predict class probabilities for X.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
The input samples. |
required |
Returns:
Type | Description |
---|---|
The class probabilities of the input samples. |
TabPFNModelSelection ¶
Base class for TabPFN model selection and path handling.
TabPFNRegressor ¶
Bases: BaseEstimator
, RegressorMixin
, TabPFNModelSelection
predict ¶
predict(
X: ndarray,
output_type: Literal[
"mean",
"median",
"mode",
"quantiles",
"full",
"main",
] = "mean",
quantiles: Optional[list[float]] = None,
) -> Union[ndarray, list[ndarray], dict[str, ndarray]]
Predict regression target for X.
Parameters¶
X : array-like of shape (n_samples, n_features) The input samples. output_type : str, default="mean" The type of prediction to return: - "mean": Return mean prediction - "median": Return median prediction - "mode": Return mode prediction - "quantiles": Return predictions for specified quantiles - "full": Return full prediction details - "main": Return main prediction metrics quantiles : list[float] or None, default=None Quantiles to compute when output_type="quantiles". Default is [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
Returns¶
array-like or dict The predicted values.
validate_data_size ¶
Check the integrity of the training data. - check if the number of rows between X and y is consistent if y is not None (ValueError) - check if the number of rows is less than MAX_ROWS (ValueError) - check if the number of columns is less than MAX_COLS (ValueError)