encoders ¶
CategoricalInputEncoderPerFeatureEncoderStep ¶
Bases: SeqEncStep
Expects input of size 1.
forward ¶
Perform the forward pass of the encoder step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
The input state dictionary containing the input tensors. |
required |
cache_trainset_representation |
bool
|
Whether to cache the training set representation. Only supported for _fit and _transform (not _forward). |
False
|
**kwargs |
Any
|
Additional keyword arguments passed to the encoder step. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
The updated state dictionary with the output tensors assigned to the output keys. |
FrequencyFeatureEncoderStep ¶
Bases: SeqEncStep
Encoder step to add frequency-based features to the input.
forward ¶
Perform the forward pass of the encoder step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
The input state dictionary containing the input tensors. |
required |
cache_trainset_representation |
bool
|
Whether to cache the training set representation. Only supported for _fit and _transform (not _forward). |
False
|
**kwargs |
Any
|
Additional keyword arguments passed to the encoder step. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
The updated state dictionary with the output tensors assigned to the output keys. |
InputEncoder ¶
Bases: Module
Base class for input encoders.
All input encoders should subclass this class and implement the forward
method.
forward ¶
Encode the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Tensor
|
The input tensor to encode. |
required |
single_eval_pos |
int
|
The position to use for single evaluation. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The encoded tensor. |
InputNormalizationEncoderStep ¶
Bases: SeqEncStep
Encoder step to normalize the input in different ways.
Can be used to normalize the input to a ranking, remove outliers, or normalize the input to have unit variance.
forward ¶
Perform the forward pass of the encoder step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
The input state dictionary containing the input tensors. |
required |
cache_trainset_representation |
bool
|
Whether to cache the training set representation. Only supported for _fit and _transform (not _forward). |
False
|
**kwargs |
Any
|
Additional keyword arguments passed to the encoder step. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
The updated state dictionary with the output tensors assigned to the output keys. |
LinearInputEncoder ¶
Bases: Module
A simple linear input encoder.
forward ¶
Apply the linear transformation to the input.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*x |
Tensor
|
The input tensors to concatenate and transform. |
()
|
**kwargs |
Any
|
Unused keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
tuple[Tensor]
|
A tuple containing the transformed tensor. |
LinearInputEncoderStep ¶
Bases: SeqEncStep
A simple linear input encoder step.
forward ¶
Perform the forward pass of the encoder step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
The input state dictionary containing the input tensors. |
required |
cache_trainset_representation |
bool
|
Whether to cache the training set representation. Only supported for _fit and _transform (not _forward). |
False
|
**kwargs |
Any
|
Additional keyword arguments passed to the encoder step. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
The updated state dictionary with the output tensors assigned to the output keys. |
NanHandlingEncoderStep ¶
Bases: SeqEncStep
Encoder step to handle NaN and infinite values in the input.
forward ¶
Perform the forward pass of the encoder step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
The input state dictionary containing the input tensors. |
required |
cache_trainset_representation |
bool
|
Whether to cache the training set representation. Only supported for _fit and _transform (not _forward). |
False
|
**kwargs |
Any
|
Additional keyword arguments passed to the encoder step. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
The updated state dictionary with the output tensors assigned to the output keys. |
RemoveDuplicateFeaturesEncoderStep ¶
Bases: SeqEncStep
Encoder step to remove duplicate features.
forward ¶
Perform the forward pass of the encoder step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
The input state dictionary containing the input tensors. |
required |
cache_trainset_representation |
bool
|
Whether to cache the training set representation. Only supported for _fit and _transform (not _forward). |
False
|
**kwargs |
Any
|
Additional keyword arguments passed to the encoder step. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
The updated state dictionary with the output tensors assigned to the output keys. |
RemoveEmptyFeaturesEncoderStep ¶
Bases: SeqEncStep
Encoder step to remove empty (constant) features.
forward ¶
Perform the forward pass of the encoder step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
The input state dictionary containing the input tensors. |
required |
cache_trainset_representation |
bool
|
Whether to cache the training set representation. Only supported for _fit and _transform (not _forward). |
False
|
**kwargs |
Any
|
Additional keyword arguments passed to the encoder step. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
The updated state dictionary with the output tensors assigned to the output keys. |
SeqEncStep ¶
Bases: Module
Abstract base class for sequential encoder steps.
SeqEncStep is a wrapper around a module that defines the expected input keys
and the produced output keys. The outputs are assigned to the output keys
in the order specified by out_keys
.
Subclasses should either implement _forward
or _fit
and _transform
.
Subclasses that transform x
should always use _fit
and _transform
,
creating any state that depends on the train set in _fit
and using it in _transform
.
This allows fitting on data first and doing inference later without refitting.
Subclasses that work with y
can alternatively use _forward
instead.
forward ¶
Perform the forward pass of the encoder step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
The input state dictionary containing the input tensors. |
required |
cache_trainset_representation |
bool
|
Whether to cache the training set representation. Only supported for _fit and _transform (not _forward). |
False
|
**kwargs |
Any
|
Additional keyword arguments passed to the encoder step. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
The updated state dictionary with the output tensors assigned to the output keys. |
SequentialEncoder ¶
Bases: Sequential
, InputEncoder
An encoder that applies a sequence of encoder steps.
SequentialEncoder allows building an encoder from a sequence of EncoderSteps. The input is passed through each step in the provided order.
forward ¶
Apply the sequence of encoder steps to the input.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input |
dict
|
The input state dictionary. If the input is not a dict and the first layer expects one input key, the input tensor is mapped to the key expected by the first layer. |
required |
**kwargs |
Any
|
Additional keyword arguments passed to each encoder step. |
{}
|
Returns:
Type | Description |
---|---|
Tensor
|
The output of the final encoder step. |
VariableNumFeaturesEncoderStep ¶
Bases: SeqEncStep
Encoder step to handle variable number of features.
Transforms the input to a fixed number of features by appending zeros. Also normalizes the input by the number of used features to keep the variance of the input constant, even when zeros are appended.
forward ¶
Perform the forward pass of the encoder step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
The input state dictionary containing the input tensors. |
required |
cache_trainset_representation |
bool
|
Whether to cache the training set representation. Only supported for _fit and _transform (not _forward). |
False
|
**kwargs |
Any
|
Additional keyword arguments passed to the encoder step. |
{}
|
Returns:
Type | Description |
---|---|
dict
|
The updated state dictionary with the output tensors assigned to the output keys. |
normalize_data ¶
normalize_data(
data: Tensor,
*,
normalize_positions: int = -1,
return_scaling: bool = False,
clip: bool = True,
std_only: bool = False,
mean: Tensor | None = None,
std: Tensor | None = None
) -> Tensor | tuple[Tensor, tuple[Tensor, Tensor]]
Normalize data to mean 0 and std 1.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
Tensor
|
The data to normalize. (T, B, H) |
required |
normalize_positions |
int
|
If > 0, only use the first |
-1
|
return_scaling |
bool
|
If True, return the scaling parameters as well (mean, std). |
False
|
std_only |
bool
|
If True, only divide by std. |
False
|
clip |
bool
|
If True, clip the data to [-100, 100]. |
True
|
mean |
Tensor | None
|
If given, use this value instead of computing it. |
None
|
std |
Tensor | None
|
If given, use this value instead of computing it. |
None
|
select_features ¶
Select features from the input tensor based on the selection mask.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Tensor
|
The input tensor. |
required |
sel |
Tensor
|
The boolean selection mask indicating which features to keep. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The tensor with selected features. |